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Abstract 

We use the Neroslavsky-Vlassov (1981) method to find a star product *h on a class of exact 
Poisson-Lie groups such that (Ca°(G)[[h]], *h, Zl) is a Hopf algebra. We show that we can find 
such a nontrivial star product on every Lie group. 
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1. The problem 

Let G be a Lie group and ( C ~ ( G ) , . ,  A) the corresponding Hopf  algebra (where • is the 

usual product of  functions on G and A : C~°(G) --+ C ~ ( G ) ~ C ~ ( G )  = C ~ ( G  × G) is the 

usual coproduct with ( A f ) ( x ,  y) :=  f ( x y ) ) .  In this note, we will consider the deformations 

(C~(G)[[h]] ,  *h, Ah) of this Hopf  algebra such that the coproduct Ah, the unit and the 

counit are the C[[h]]-Iinear extension of  their classical equivalent (we shall write A for Zlh ) 

and such that *h is a differential star product. 

In this class of  deformation Drinfeld has proved the existence of deformation for every 

exact Poisson-Lie groups (G, { }r), where Jr, r l  = 0, and for every simple Poisson-Lie 

groups. 

Some people consider the deformation (C~(G)[[h]] ,  *h, Ah) of (G , . ,  A) where the 

coproduct Ah is not the C[[h]]-l inear extension of this classical equivalent A. In this class 

of deformation Eingof and Kazhdan have proved the existence of  deformation for every 

Poisson-Lie group (G, { }). 
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Definition. Let (Coo(G)[[h]], *h, ,6) be a deformation of  the Hopfalgebra (Coo(G),., A). 

Define the following bracket: 

1 

{a,b} := l i m - : - ( a . h b - - b . h a ) ,  wherea, b e C o o ( G ) .  
h~O tl 

Since *h is associative and compatible with the coproduct `6, with this bracket (G, { }) 

is a Poisson-Lie group. We shall call (G, { }) the classical limit of (Coo(G), *h, `6) and 

(Coo(G), *h, `6) a Hopf * deformation of  (G, { }). 

Question. Let (G, { }) be a Poisson-Lie group. Does there exist a Hopf • deformation 
(Coo(G), *h, A) of (G, { })? 

Remark .  (Bonneau et al. [2], Gerstenhaber and Schack [5]). If  (Coo(G), ¢th, A) ,  is a de- 

formation of  the bialgebra (Coo(G), . ,  ,6) thus it is a Hopf algebra and then a deformation 

of  the Hopf algebra (Coo(G), . ,  ,6). 

Let (G, { }) be a Poisson-Lie group; we are thus looking for a differential star product *h 
on Coo(G) such that: 

- it is associative: 

a "k h (b *h C) = (a *h b) *h C Va, b, c E Coo(G); 

- it admits 1 as unit: 

a*h  1 = 1 , h a = a  V a ~ C o o ( G ) ;  

- it is compatible with the coproduct A and the counit e (where e : C°°(G) --+ • or C is 

the usual counit with ~ ( f )  :=  f ( e ) ,  e is the neutral element of  G): 

A(a *h b) = A ( a ) . . h A ( b ) ,  ~(a *h b) = ~(a)E(b) Va, b ~ Coo(G), 

where **h is the natural extension of  *h on ~2COO(G) (al ® a2 * *hbl ® b2 :=  al *h 

bl ® a2 *h b2); 
- its associated Poisson bracket is the Poisson bracket of  the Poisson-Lie group: 

1 

h~01im -~ (a *h b - b *h a) = {a, b} Va, b ~ C°°(G). 

The answer to the question of  quantization of  (G, { }) is not known in general; we refer to 
[ 1 ] for a precise description of  the state of  the question. We shall study here the exact case - 
which we recall in Section 2 - translating its quantization into a cohomological problem in 
Section 3. We solve this problem for some examples; this leads in particular to a nontrivial 
H o p f ,  deformation on any Lie group (for a particular Poisson bracket). 
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2. The exact case 

67 

2.1. Definition 

Notat ion.  Let G be a Lie group; we shall denote by G its Lie algebra, by L¢~ its enveloping 
algebra and by 7) the space of differential operators on G. We call ~. (resp. p) the only homo- 
morphism (resp. antihomomorphism) f r o m / J ~  to 79 which maps X on the corresponding 
left (resp. right) invariant vector field on G. 

Definition. A Poisson-Lie group (G, { }) is said to be exact if there exists an element 
r c /x2~ such that 

{a, b} = m o (®2;~(r) - ®2,o(r))(a ® b) 'Ca, b c C°°(G) ,  

where m is the usual multiplication of functions. In that case, we shall denote { } =:  { }r. 

Remark.  With such abracket  (G, { }r) is a Poisson-Lie group if and only if [r, r ] c  (A3~) inv 
where [ ] is the Schouten bracket and (A3~) inv is the subspace of all the elements of  (A3~) 

invariant under the adjoint action. 

2.2. Takhtajan's Hopf * deformation 

Notation.  The following way to describe the elements of ®kHG will be useful. Let G be 

a Lie algebra and {X1 . . . . .  Xn} be a basis of  g ;  we shall write xi for Xi (resp. Xi ® 1, 

Xi ® 1 ® 1, etc.) if k = 1 (resp. 2, 3, etc.). We shall write Yi for 1 ® Xi (resp. 1 ® Xi ® 1, 
etc.) if k = 2 (resp. 3, etc.). Hence an element of  ®2H~ will be written as a polynomial in 

the noncommuting variables {Xl . . . . .  Xn, Yl . . . . .  Yn }. 

Takhtajan considers a star product of  the form: 

a , h b : = m o ® 2 p ( F - l ( x , y ) ) o ® 2 ) . ( F ( x , y ) ) ( a ® b )  ga, bEC°C(G) ,  

where F(x, y) = 1 ® 1 + hFl(x,  y) + h2F2(x, y) + . . .  c ®2H~[[hl] .  

Remarks.  (about the star-product). 

1. The interest to consider such a star product is that it is compatible with the coproduct A 
and the counit e. 

2. Such a star product will be associative if [7] and only if: 

F(x + y, z)F(x,  y ) F - l ( y ,  z ) F - I ( x ,  y -t- z) c (@3u~)inv[[h]], 

where (@3/,~)inv is the subset of  the elements of ®3/,/G invariant under the adjoint 

action. 
3. The function 1 will be a unit for this star product if Fi ~ ®2(HG)o, for all i > 1, where 

(L/~)o :=)X1 . . -  Xk E / d ~  I k > l (C  L/G. 
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4. The associated Poisson bracket will be always exact: 

1 
lim -:-(a *h b - b *h a) 
h--+0/'t 

= m o (®2X(F1 (x, y) - FI (y, x)) - ®2p(Fl  (x, y) - FI (y, x)))(a ® b). 

Hence this method provides Hopf • deformation only for exact Poisson-Lie groups. 

5. If  H l (G, ®2HG, 3) = 0, in particular if G is semi-simple and simply connected or 

if G is compact, then for any Hopf • deformation (G, *h, A) of  (G, { }) there exists 
F ~ ®2H~[[h]] such that 

a *h b :=  m o ® 2 p ( F - 1  (x, y)) o ®2X(F(x,  y))(a ® b) Va, b E C~(G).  

Notation. Let V be a vector space and u = Y~i>_o hiui, v ~- ~i>_o hivi be two elements 

of  V[[h]]. We shall denote by (u)n the truncated sum y~in___o hiui, by [U]n the nth order Un 

and we shall write u n v for (U)n = (V)n. 

To prove the above remarks, we proceed as follows. Let *h be a differential star product 

a *h b :=  Z hnCn~#()~(xu)a)O~(x#)b)' 

where Cn~# ~ C ~ ( G ) f o r  all n 6 ~, all u :=  (u 1 . . . . .  ak), # :=  (#1 . . . . .  i f ) ,  ~i, 

flJ ~ N, and x,~ :=  x,~ - • • x,~k and y# :=  y#~ • • • y# .  First, we shall write the compatibility 

condition and find the corresponding condition on C. The induced star product '~h on 

C ~ ( G  x G) is: 

(A * *hB)(x, y) = Z hnl+n2gnlalfll (x)gn2°t2fl2 (y) 
nln2OtlOtZfllfl2 
X (~2)~(Xul yu2)a)(x, y)(~Z~.(x#1 y#2)B)(x, y). 

Since we have 

(~2X(xuj yc~z)Aa)(x, y) = ()~((Ad y - l  xuj )xc~2)a)(xy), 

the right-hand side of the compatibility condition A (a *h b) = ,4 ( a ) ,  *h ,4 (b) is 

Z hnl+nzCnlotlfll (x) 
nln2OtlOt2fllfl2 

X Cnzotzfl 2 (y )  (~ ((Ad y-lxc~ l )xc~2 )a) (xy) (X ((Ad y-lx#l )x#2 )b) (xy). 

The compatibility condition is equivalent to 

C(xy) = (ad y - lC(x ) )  . C(y),  (l) 

where C (x) :=  Y~nc~# hn Cnu#Xu y# and. is the component by component product on ®2L/~. 

If*h is a Takhtajan star product then C(x) :---- (Ad x - I F - l )  . F and since this C satisfies 
condition (1) we have proved the first part of  the remark. 
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Now we shall prove that if H 1 (G, ®2L/•, 3) --  0, the only C which satisfies condition 

(1) is C(x)  :=  ( A d x - l F  -1)  • F,  where F 6 ®2U~[[h]]  and (F )o  = 1 ® 1. Indeed: 

[(ad  y - l C ( x ) ) -  C(y)  - C(xy)]n 

= Cn(y) - Cn(xy)  + A d y - ] C n ( x )  + bc (C) (x ,  y) 

= (3Cn)(x, y) + bc (C) (x ,  y),  (2) 

where bc(C)  only depends on C up to order n - 1 and 

[ ( A d x - l  F - l )  • F]n = Fn - A d x - l  Fn + b f ( F )  = (3Fn)(x) + b f ( F ) ,  

where b f ( F )  only depends on F up to order n - 1. 

At the first order Eq. (1) gives (3 C j ) (x, y) = 0. On the other hand, [(Ad x - l  F -  1 ). F ll = 

(3 Fi )(x).  Hence, if H 1 (G, @2LEG, 3) = 0, for each C which satisfies (1), there exists (F l )  

defined at order 1 such that C(x)  ~ ( A d x  - l  (F 1)l • (F)t .  Assume it is true at the nth 

order; i.e. if C satisfies (1), there exists (F), ,  defined at the order n such that 

C(x)  n ( A d x _ I ( F _ I )  n . (F)n 

then, since C'(x )  ~= (Ad x - l ( F  -I) , ,  • (F)~ satisfies Eq. (1) one has for Eq. (2) 

8(Cn+l(x)  - ( (Ad x - I  (F  - l ) n  • (F)n)n+l)  -~ O. 

Hence, if H l (G, @2blG, 3) = O, 

Cn+l(x)  ~ ( ( A d x  I ( F - l ) n ) - ( F ) n ) n + l  + 3 F n + l ,  

C(x)  ,,+l ( A d x _ l ( F _ l ) n +  t . (F)n+l 

with (F)n+l  = ( F)n "+ hn Fn+ l . 

Then for each C which satisfies (1), there exists F such that C(x)  ---- (Ad x -  I F ~ ) .  F. 

We have proved the fifth condition of  the remark. 

2.3. The pentagonal equation 

Let (G, { Jr) be an exact Poisson-Lie group; to build a H o p f ,  deformation as described 

above, we are looking for an element ot = 1 ® 1 @ 1 + Z i  > 1 h i°ti, where oti 6 (®3 (L/G)0)in" 

and an element F = 1 ® 1 + Y-~i>l hiFi, where Fi ~ @2(HG)0, such that 

FI (x, y)  -- F1(y, x)  = r, 

A (F ,  ~)  :=- et(x, y,  z ) F ( x ,  y + z ) F ( y ,  z) - F ( x  + y, z ) F ( x ,  y) = O. 

We shall now study order by order and from a cohomological  point of  view, the associativity 

equation A ( F, et ) = O. 

From now o n, we  assume that ~ is fixed and we shall see how the cohomological  ob- 

struction for the existence of an F which satisfies the associativity equation A(F ,  c~) = 0 
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implies condition on c~: the pentagonal equation P(ot) = 0 where P(tr)  is defined below 

(see Eq. (3)). 

The nth order of  the associativity equation reads: 

[A(F,  o~)]n = dFn + Otn + an(F, ct), 

where d is the Hochschild coboundary operator, and an(F, or) depends only on F and or, 

up to order n - 1 (an(F, or) = an((F)n-1,  (a)n-1)) .  
Suppose that F ----- 1 ® 1 + ~-]n-~ h i Fi is a solution of  the associativity equation, up to 

order n - 1 (A(F,  a )  n~l 0). Then a necessary condition for the existence of  a prolongation 

of  this solution at order n is d(otn + a,, (F, or)) = O. 

Proposition 1. Let ot = 1 ® 1 ® 1 + Z i > l  hi°ti (x, y, z) and F = 1 ® 1 + ~ - ~  hi Fi (x, y) 

such that A (F ,  ~) n~l O. Then d(otn + an(F, or)) = 0 if  and only i f  

P(c~) :=  or(x, y, z)ot(x, y + z, t)ot(y, z, t) - ot(x + y, z, t)ot(x, y, z + t) n__ 0. (3) 

Definit ion.  Given F = 1 ® 1 + Zi>l hiFi,  let us define the function f ( F )  by 

f ( F )  : :  F ( x  + y, z ) F ( x ,  y ) F - l ( y ,  z ) F - l ( x ,  y + z). (4) 

L e m m a  1. Let F = 1 ® 1 + Y]nS~ hi Fi be such that A (F ,  or) n~_l O. Then 

[ f  ( F)]n = - a n ( F ,  et). 

Proof  Since A(F ,  ~) n~_l 0 we have 

(F(x  + y, z ) F ( x ,  Y))n-1 = ((Or)n-IF(x, y + z ) F ( y ,  Z))n- l ,  

then 

(F (x  + y, z ) F ( x ,  Y))n = ( (~)n- I  F(x ,  y + z ) F ( y ,  Z))n 

- hn[(ot)n-IF(X, y + z )F (y ,  z) - F ( x  + y, z )F (x ,  Y)]n. 

Further 

f ( F )  n_n= ((Or)n-iF(x, y q- z ) F ( y ,  Z ) ) n F - l ( y ,  z ) F - l ( x ,  y + z) 

- hn[(ot)n_lF(x,  y + z ) F ( y ,  z) - F ( x  + y, z )F (x ,  Y)]n 

n - - - ( O t ) n _ l - - h n [ ( c t ) n _ l F ( X , y + z ) F ( y , z ) - F ( x - } - y , z ) F ( x , y ) ] n .  [] 

1 ' v~n-I hiFi sa t i s f i e s [ f (F) (x ,  y, z), F ( x + y + z ,  t)] n L e m m a  2. Assumethat  F = 1® -i-2..,i>>_ 1 ~--- 

0 and [ f ( F ) ( y ,  z, t), F (x ,  y + z + t)] n_. 0. Then P ( f ( F ) )  n_ O. 
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Proof  

f ( F )  n__ f ( F ) ( x ,  y,  z ) F ( x  ÷ y + Z, t ) F ( x ,  y ÷ z) 

x F - l ( y  + z, t ) F - l ( x ,  y + z + t ) f ( F ) ( y ,  z, t) 

- f ( F ) ( x  + y, Z, t ) f ( F ) ( x ,  y,  Z + t) 

n___ F ( x  + y + z, t ) f ( F ) ( x ,  y, z ) F ( x ,  y ÷ z) 

× F - l ( y  + z, t ) f ( F ) ( y ,  z, t ) F - l ( x ,  y + Z + t) 

- f ( F ) ( x  + y, Z, t ) f ( F ) ( x ,  y, Z + t) 

n_ F ( x  + y + Z, t ) F ( x  + y, z ) F ( x ,  y ) F  - l ( y ,  z ) F  - I ( x ,  y + Z) 

× F(x ,  y + z ) F  - I ( y  + Z, t ) F ( y  + Z, t ) F ( y ,  z ) F  - l ( z ,  t) 

× F - l ( y , z + t ) F - l ( x , y + z + t ) - F ( x + y + z , t ) F ( x + y , z )  

× F - I ( Z ,  t ) F - l ( x  + y, Z + t ) F ( x  + y, z + t ) F ( x ,  y) 

x F - l ( y , z + t ) F - l ( x , y + z + t )  n o .  [] 

Proof  o f  Proposition 1. Since we have A(F ,  or) "2-1 0, we have ( f ( F ) ) n - I  ---- ( a )n - t  E 

(®3H{7)inv[[h[l and, since (F)o  = 1 ® 1, then [ f ( F ) ( x ,  y,  z), F ( x  + y + z, t)[ ~= 0 and 

[ f ( F ) ( y ,  z, t), F ( x ,  .v + z + t)] =n 0. Hence P ( f ( F ) )  =n O. But 

[P(a) ]n  ---- dan q- pn(a) ,  

where Pn (a)  depends only on a up to order n - 1. 

Hence dan(F,  cl) = pn ( (a )n - I )  and [P(a ) ]n  = dan + pn(a)  = d(an + a n ( F ,  a)) .  [] 

3. Step by step deformation 

We shall use here the Neros lavsky-Vlassov method to construct a star product in our 

situation. This is based on Hochschild cohomology and its splitting relative to a symmetry 

operator. Let us quite recall some classical results. 

Theorem 1 (Vey [8]). For any z E ®k(UG)0 such that dz  = 0, there exist v ~ ®k- t  (H~)o 

and a unique w E A k G such that z = d v + w. Furthermore w is the completely antisymmetric 

part  o f  z (w = AS(z)) .  

Remark. We can split the Hochschild cohomology with the following involution: 

: ®k(Lt~)o ~ ®k(HG)O : u| ® . . .  ® uk ~ (--1)k(k+l)/2uk ® " "  ® Ul 

since this involution commutes with the Hochschild coboundary operator ( d o  g = cr o d). 

Theorem 2. 
1. Let z ~ ®k (Lt G)o such that d z = 0 and cr ( z ) = ( -  1)k z then there exist v E ®k-  J (Lt G )o 

such that a ( v )  = ( - 1 ) k v  and w E A~G such that z = dv  + w. Furthermore w is the 

completely antisymmetric part o f  z (w = AS(z)) .  
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2. Let z ~ ®k(LtG)o such that dz = 0 and a (z )  = ( - - l ) k + l z  then there exists v 

@k-I (/4/~) 0 such that a ( v )  = ( - -1)k+lv  and z = dr. 

The first step of  the Neroslavsky-Vlassov method to find a star product is to impose 

symmetry conditions on the bidifferential operators which appear in the star product such 

that, at each step, the cohomological  problem is in one of  the two cohomological  spaces for 

this decomposit ion relative to a .  We shall try to do the same thing here. 

Definit ion.  Let A be an algebra. Define s to be the operator on A [[h ]] which maps Z i  >0 hiai 

to s ( Z i >  0 hiai) :=  Y~4>_o(-1)ihiai • 

From now on, we look for a solution (F,  a )  of the associativity equation (A(F ,  c~) = 0) 

such that s o a ( F )  + F = 0. This condition implies that the odd order cochains are 

antisymmetric and that the even order ones are symmetric. 
n--I Assume that F = 1 ® 1 + Y~.i=l hi Fi is a solution of  the associativity equation to (n - 1)th 

order ( A ( F ,  a )  n=l 0) such that s o cr(F)  + F n_l 0. Then a necessary condition for the 

existence of  a prolongation F '  = 1 ® 1 + zin=l  hiFi of this solution at order n such that 

s o a ( F ' )  + F'  n 0 is a(otn + an(F, or)) + (-1)n(etn + an(F, or)) = O. 

Proposition 2. Letc~ = 1 ® 1 ® 1 + Z i > l  hi°ti(x, Y, Z) and F = 1 ® 1 + zin_~l I hiFi be 

such that s o a ( F )  + F n-I  0 and A(F ,  or) n~_l O. Then a(etn + an(F, or)) + (- l)n(c~n + 

an(F, or)) = 0 if  and only i f  T(ot) n 1 where 

T ( a )  :=  or" s o a(ot).  (5) 

n-I L e m m a  3. Let F = 1 ® 1 +~i_>1 h i Fi be such that s oa  ( F ) + F n_ O; then T ( f ( F ) ) n 1. 

Proof  

f ( F )  . s o a ( f ( F ) )  n_ F (x  + y, z ) F ( x ,  y ) F - l ( y ,  z ) F - I ( x ,  y + z) 

x ( s F ) ( z  + y, x ) ( s F ) ( z ,  y ) ( s F - l ) ( y ,  x ) ( sF -J ) (Z ,  y + x)  

n F (x  + y, z ) F ( x ,  y ) F  - I  (y, z ) F  -1 (x, y + z ) F ( x ,  Z + y) 

x F ( y , z ) F _ l ( x , y ) F _ l ( y + x , z  ) n= 1. [] 

Proof  o f  Proposition 2. Since s o cr(F) + F n 0 then T ( f  (F) )  n O. But 

[T(ot)]n = an + (--1)na(otn) + tn(Ot), 

where tn(Ct) depends only on oe until order n - 1. Hence an(F, el) + ( -  l ) n a ( a n ( F ,  or)) = 

& ((e t )n- l )  and 

[T(a)]n = an + ( - 1 ) h a ( a n )  + tn(et) 

= (an + an (F, or)) + ( -  1 )ha (Otn + an (F, or)) [] 
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Theorem 3 (Drinfeld [4]). Let ot 2 be any element of (A3G)  inv. Then there exists ot = 1 ® 

1 ® 1 q--hZot2 -~- ~ i > 2  hZi°tzi, where~ti E (®3(b/G)0)inv, such that P (~)  : Oand T(~)  : t. 

We now have everything we want  to try to use Neros lavsky-Vlassov ' s  method. 

At the first order the problem is to prove that there exist a l c  (®3(~/~)0)inv and Fl E 

®2(L/G)o such that a ( F l )  - F1 = 0, F1 (x, y) -- F1 (y, x)  = r and dFl +et l  = 0. FI : =  ½r 

and eq : =  0 are solutions. 

At the second order the problem is to prove that there exist a2 c (®3(U~)0)inv and 

F2 E ®2 (L/~)O such that ~r ( F 2 ) +  F2 = 0 and dF2 + o~2 a t- a2(1 ® 1 + h Fi, 1 ® 1 ® 1) = 0. 

Since P (1 ® 1 ® 1) = 0 and T (1 ® 1 ® 1) = 1 we have da2 (1 ® 1 ÷ h El, 1 ® 1 ® 1 ) = 0 

and or(a2(1 ® 1 + h F 1 ,  1 ® 1 ® 1 ) ) + a 2 ( l  ® 1 + h F 1 ,  1 ® 1 ® 1) = 0. 

Then there exists a good F2 if and only if AS(ot2 + a2( l  ® 1 + h Fl, ! ® 1 ® 1)) = 0 but 

aS ( a2 ( l  ® I + h F i ,  1 ® 1 ® 1)) = - I [ F I ,  F1] = - l [ r , r ]  ~ (A3~)inv. Then,  if we take 

R2 = ~6[r, r],  there exists a good F2 and the problem is solved at the order 2. 

Now let ot = 1 ® 1 ® 1 + h 2 ~ [ r ,  r] + Zi>_2 h2iot2i such that P(ot) = 0 and T(ot) = 1 

(we know that such an ot exists us ing Theorem 3). 

Let F = 1 ® I + y ~ n  I hiFi be such that s o a ( F )  + F = 0 and A(F ,  ot) 2,~ O. 
X-'2n+l h i Using Theorem 2, we can find F '  = 1 ® 1 + z_~i=l Fi an extension of F such that 

s o ~r ( F ' )  + F '  = 0 and A ( F ' ,  or) 2n+l 0. 

Let F = 1 ® 1 + z--,i=lX"2n+l hiFi be such that s o a ( F )  + F = 0 and A ( F ,  ot) 2n+l= 0. 

Using Theorem 3, we know that the only obstruct ion to the existence of an extension of F 

is AS(ot2n+2 + a2n+2(F, or)). 

But if F is such that s o a ( F )  + F = 0 and A(F ,  or) 2n+l 0 then both equat ions are still 

true for F '  : =  F + h 2n+l to where to c /x2~ and the only  obstruction to the existence of  an 

extension of  F '  is AS(ot2n+2 -}- a2n+2(F, or)) -k- 3 [F l ,  to]. 

In part icular we have the fol lowing theorem. 

Theorem 4. Let (G, { }r) be an exact Poisson-Lie group. Suppose that the linear application 

/~2~ ~ /x3~ . w ~ [r, w] is onto then there exist ot = 1 ® 1 ® 1 + ~i>l hi°li, where 

~i C (®3(U~)0)inv, and F = 1 ® 1 + ½hr + Y~i>>_2 hI Fi such that s o a ( F )  + F = 0 and 

A(F,c~) = 0 .  

4. H o p f .  deformation of our examples 

Now, we shall use the result  of  Section 3 to prove that for each non-Abe l i an  Lie group 

G, there exists a nontr ivial  deformat ion ( C ~ ( G ) ,  *h, A) of  ( C ~ ( G ) ,  -, ,6). 

In [3], we construct  for each non-Abe l i an  Lie group G an exact nontr ivial  Lie-Poisson 

structure (G, { }r). Let (G, { }r) be one of  these exact Poisson-Lie  group. We want to prove 

that, for each of  them, there exist a = 1 ® 1 ® 1 + Z i > l  hi°li, where O' i E (®3(U~)0)inv, 

and F = 1 ® 1 + ½hr + ~-~i>_2 hiFi, where F/ E ®2(HG)0,  such that A(F ,  et) = O. 
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If  [r, r]  = 0, Drinfeld has proved that there exists F = 1 ® 1 + ½hr + Y~i>_2 hiFi , where 

Fi ~ ®2(H~)o,  such that A(F,  1 ® 1 ® 1) = 0, so the problem of Hopf  star deformation is 

solved by this Drinfeld 's  solution. 

If  [r, r] ¢ 0, the Lie-Poisson structure is one of the following: 

1. G = su(2)  =)X ,  Y, Z(  and the element r is X A Y. 

2. ~ is solvable, G l : =  [G, G] = Z(G) is one-dimensional and spanned by an element E, 

and the element r is X A Y where [X, Y] = E. 

3. G is solvable, Z(G) = 0, G j :=  [G, G] is Abelian, d im(~  l) = 2 and there exists a 

bilinear form/3 such that ad x o ad y(z) = / 3 ( x ,  y)z  for all x,  y ~ G and for all z 6 G j • 

The element r is X l A X, where X l 6 ~1 and X 6 ~ \ G l, such that/3(X, X) ~ 0. 

R e m a r k .  Let (G, { }r) be one of  those described in the three previous cases. Then there 

exists a three-dimensional ideal 7-[ o f f  such that r c A2?/ C A2G and (Int(~))In = Int(?/) 

where (Int(G))[7~ :=  {ad(x ) ln  I x  ~ G} andlnt(7-[) :--  {ad(x)lT~ I x  ~ 7-[}. 
Let (G, { }r) be one of  these Lie-Poisson structures. Let ~ be its Lie algebra and 7-/ 

be the minimal ideal which supports r.  Let H be the simply connected Lie group of  Lie 

algebra 7-/. Then (H, { }r) is a Lie-Poisson structure. Since d im(?/ )  = 3 and [r, r] ¢ 0 the 

linear map A2?/ --+ A3?/ : w --+ [r, w] is onto. Thus, using Theorem 3 there exist ot = 

1 ® 1 ® 1 + Y~-i>I hi~i,  where oti e (®3(U?/)0)inv , and F = 1 ® 1 ÷ ½hr + ~ i > 2 h i F i  

where Fi c ®2(H?/)o,  such that A ( F , a )  = 0. Since (lnt(G))lT~ = Int(?/) we have 
(®3(U?/)o)inv C (®3(/a/~)o)inv then oti c (®3(/at~)0)inv and (F ,  t~) is a solution of the 

problem for the Poisson-Lie group (G, { }r). 

Hence, we have proved: 

Theorem 5. Let G be a non-Abelian Lie group. Then there exists on G a nontrivial exact 

Lie-Poisson structure ( G , { }r ) and a Hopf  * deformation ( C ~ ( G ) , *h , A) o f  this Lie Poisson 

structure. 
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